
SM275 Mathematical Methods for Economics Fall 2019 Uhan

Lesson 16. Optimization of Functions with n Variables

1 Review: optimization of a function of 2 variables

● Let f be a function of two variables

● f (a, b) is a local minimum of f if f (a, b) ≤ f (x , y) for all (x , y) “near” (a, b)

● f (a, b) is a local maximum of f if f (a, b) ≥ f (x , y) for all (x , y) “near” (a, b)

● (a, b) is a critical point of f if either

(i) fx(a, b) = 0 and fy(a, b) = 0 or (ii) fx(a, b) or fy(a, b) does not exist

● Local optimamust occur at critical points

● How to ûnd local optima:

○ Let’s assume fx , fy, fxx , fyy, and fxy always exist
○ Let (a, b) be a critical point of f – in this case, that means fx(a, b) = 0 and fy(a, b) = 0

○ Second derivative test.

◇ Deûne D = fxx(a, b) fyy(a, b) − [ fxy(a, b)]2

◇ _en:

if D > 0 and fxx(a, b) > 0, then f has a local minimum at (a, b)
if D > 0 and fxx(a, b) < 0, then f has a local maximum at (a, b)
if D < 0, then f has a saddle point at (a, b)
if D = 0, then the test gives no information

Example 1. Find the local optima of f (x , y) = 12x + 18y − 2x2 − xy − 2y2.
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2 An economic application: proût maximization for amultiproduct ûrm

● _ere aremany applications of optimization to economics

● A classic example: proût maximization

● Consider a ûrm that produces and sells two products

● Prices of these products are exogenously determined

● Variables:

R = revenue Q1 = quantity of product 1 produced
C = cost Q2 = quantity of product 2 produced

● Model:

maximize R − C
subject to R = 12Q1 + 18Q2

C = 2Q2
1 + Q1Q2 + 2Q2
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● _e unit price of product 1 is and the unit price of product 2 is

● _emarginal cost of product 1 is

● _emarginal cost of product 2 is

● _e production costs of the two products are related to each other!

● We can write proût as a function of Q1 and Q2:

● We want to maximize proût π – we already did this in Example 1!

f ↔ π x ↔ Q1 y↔ Q2

● Locally optimal production plan and proût:

● Looking ahead: what if we have 3 products? 100 products? n products?
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3 _e gradient and critical points

● Let f be a function of n variables

● Let’s call these variables x1, x2, . . . , xn

● f (a1, a2, . . . , an) is a local minimum of f if

f (a1, a2, . . . , an) ≤ f (x1, x2, . . . , xn) for all (x1, x2, . . . , xn) “near” (a1, a2, . . . , an)

● f (a1, a2, . . . , an) is a local maximum of f if

f (a1, a2, . . . , an) ≥ f (x1, x2, . . . , xn) for all (x1, x2, . . . , xn) “near” (a1, a2, . . . , an)

● Let’s assume that all the ûrst and second partial derivatives always exist

● _e gradient of f is the vector

● In words,
∂ f
∂xi

(a1, a2, . . . , an) is

● Intuitively, the rate of change at a local minimum or local maximum should be zero in all directions

● _eorem. If (a1, a2, . . . , an) is a local minimum or local maximum of f , then ∇ f (a1, a2, . . . , an) = 0, or
equivalently

∂ f
∂x1

(a1, . . . , an) = 0
∂ f
∂x2

(a1, . . . , an) = 0 ⋯
∂ f
∂xn

(a1, . . . , an) = 0

● _e points that satisfy the ûrst-order necessary condition are called critical points

● Note that this is just amore general version of what we had for functions with 2 variables

Example 2. Find the critical points of f (x1, x2, x3) = e2x1 + e−x2 + ex2
3 − 2x1 − 2ex3 + x2.
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4 _eHessian and the second derivative test

● How do we know if a critical point is a local minimum or a local maximum?

● We need a “second derivative test” for n variables

● _eHessian matrix of f is

H(x1, . . . , xn) =
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● Recall that
∂2 f

∂x j∂xi
means “take the derivative of f with respect to xi , then with respect to x j”

Example 3. Find theHessian matrix of f (x1, x2, x3) = e2x1 + e−x2 + ex2
3 − 2x1 − 2ex3 + x2. Recall from Example 2 that

∂ f
∂x1

= 2e2x1 − 2
∂ f
∂x2

= −e−x2 + 1
∂ f
∂x3

= 2x3ex
2
3 − 2ex3

● Let Hk(x1, . . . , xn) be the square submatrix formed by the ûrst k rows and columns of H(x1, . . . , xn)

● _e kth principal minor of H(x1, . . . , xn) is
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Example 4. Find all of the leading principal minors of H(x1, . . . , xn) from Example 3 at (x1, x2, x3) = (0, 0, 1), the
critical point of f found in Example 2.

● Second derivative test.

○ Suppose (a1, a2, . . . , an) is a critical point of f
○ If dn ≠ 0:

(1) if all the principal minors of H(a1, . . . , an) are positive
(d1 > 0, d2 > 0, . . . , dn > 0) } then f has a local minimum at (a1, . . . , an)

(2) if the ûrst principal minor of H(a1, . . . , an) is negative
and the remaining principal minors alternate in sign
(d1 < 0, d2 > 0, d3 < 0, etc.)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

then f has a local maximum at (a1, . . . , an)

(3) otherwise, f has a saddle point at (a1, . . . , an)

○ If dn = 0, then the test gives no information

Example 5. Is (x1, x2, x3) = (0, 0, 1), the critical point of f found in Example 2, a local minimum or a local
maximum?

● Note that the second-order suõcient condition is just amore general version of the second derivative test we
had for functions with 2 variables

● For a function f (x , y) with 2 variables, theHessian is

and so
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(i) “all the principal minors are positive” means

(ii) “the ûrst principal minor is negative, and the remaining principal minors alternate in sign” means

5 Exercises

Problem 1. Let f (x , y, z) = x3 + xy2 + x2 + y2 + 3z2. Find the critical points. Classify each critical point as a local
maximum, local minimum, or saddle point.
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