1 Review: optimization of a function of 2 variables

- Let *f* be a function of two variables
- f(a, b) is a **local minimum** of f if $f(a, b) \le f(x, y)$ for all (x, y) "near" (a, b)
- f(a, b) is a **local maximum** of f if $f(a, b) \ge f(x, y)$ for all (x, y) "near" (a, b)
- (*a*, *b*) is a **critical point** of *f* if either
 - (i) $f_x(a,b) = 0$ and $f_y(a,b) = 0$ or (ii) $f_x(a,b)$ or $f_y(a,b)$ does not exist
- Local optima must occur at critical points
- How to find local optima:
 - Let's assume f_x , f_y , f_{xx} , f_{yy} , and f_{xy} always exist
 - Let (a, b) be a critical point of f in this case, that means $f_x(a, b) = 0$ and $f_y(a, b) = 0$
 - Second derivative test.
 - $\diamond \text{ Define } D = f_{xx}(a,b)f_{yy}(a,b) [f_{xy}(a,b)]^2$
 - $\diamond~$ Then:

if	D > 0	and	$f_{xx}(a,b)>0,$	then f has a local minimum at (a, b)
if	D > 0	and	$f_{xx}(a,b)<0,$	then f has a local maximum at (a, b)
if	D < 0,			then f has a saddle point at (a, b)
if	D = 0,			then the test gives no information

Example 1. Find the local optima of $f(x, y) = 12x + 18y - 2x^2 - xy - 2y^2$.

1

2 An economic application: profit maximization for a multiproduct firm

- There are many applications of optimization to economics
- A classic example: profit maximization
- Consider a firm that produces and sells two products
- Prices of these products are exogenously determined
- Variables:

R = revenue	Q_1 = quantity of product 1 produced
$C = \cos t$	Q_2 = quantity of product 2 produced

• Model:

```
maximize R - C
subject to R = 12Q_1 + 18Q_2
C = 2Q_1^2 + Q_1Q_2 + 2Q_2^2
```

- The unit price of product 1 is and the unit price of product 2 is
- The marginal cost of product 1 is
- The marginal cost of product 2 is
- The production costs of the two products are related to each other!
- We can write profit as a function of *Q*₁ and *Q*₂:
- We want to maximize profit π we already did this in Example 1!

$$f \leftrightarrow \pi$$
 $x \leftrightarrow Q_1$ $y \leftrightarrow Q_2$

- Locally optimal production plan and profit:
- Looking ahead: what if we have 3 products? 100 products? *n* products?

3 The gradient and critical points

- Let *f* be a function of *n* variables
- Let's call these variables x_1, x_2, \ldots, x_n
- $f(a_1, a_2, \ldots, a_n)$ is a **local minimum** of f if

$$f(a_1, a_2, \dots, a_n) \le f(x_1, x_2, \dots, x_n)$$
 for all (x_1, x_2, \dots, x_n) "near" (a_1, a_2, \dots, a_n)

• $f(a_1, a_2, \ldots, a_n)$ is a **local maximum** of f if

$$f(a_1, a_2, \dots, a_n) \ge f(x_1, x_2, \dots, x_n)$$
 for all (x_1, x_2, \dots, x_n) "near" (a_1, a_2, \dots, a_n)

- Let's assume that all the first and second partial derivatives always exist
- The gradient of *f* is the vector
- In words, $\frac{\partial f}{\partial x_i}(a_1, a_2, \dots, a_n)$ is
- Intuitively, the rate of change at a local minimum or local maximum should be zero in all directions
- Theorem. If $(a_1, a_2, ..., a_n)$ is a local minimum or local maximum of f, then $\nabla f(a_1, a_2, ..., a_n) = 0$, or equivalently

$$\frac{\partial f}{\partial x_1}(a_1,\ldots,a_n)=0 \qquad \frac{\partial f}{\partial x_2}(a_1,\ldots,a_n)=0 \qquad \cdots \qquad \frac{\partial f}{\partial x_n}(a_1,\ldots,a_n)=0$$

- The points that satisfy the first-order necessary condition are called critical points
- Note that this is just a more general version of what we had for functions with 2 variables

Example 2. Find the critical points of $f(x_1, x_2, x_3) = e^{2x_1} + e^{-x_2} + e^{x_3^2} - 2x_1 - 2e^{x_3} + x_2$.

4 The Hessian and the second derivative test

- How do we know if a critical point is a local minimum or a local maximum?
- We need a "second derivative test" for *n* variables
- The **Hessian matrix** of *f* is

$$H(x_1,\ldots,x_n) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_2 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \frac{\partial^2 f}{\partial x_2 \partial x_n} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

• Recall that $\frac{\partial^2 f}{\partial x_j \partial x_i}$ means "take the derivative of f with respect to x_i , then with respect to x_j "

Example 3. Find the Hessian matrix of $f(x_1, x_2, x_3) = e^{2x_1} + e^{-x_2} + e^{x_3^2} - 2x_1 - 2e^{x_3} + x_2$. Recall from Example 2 that

$$\frac{\partial f}{\partial x_1} = 2e^{2x_1} - 2 \qquad \qquad \frac{\partial f}{\partial x_2} = -e^{-x_2} + 1 \qquad \qquad \frac{\partial f}{\partial x_3} = 2x_3e^{x_3^2} - 2e^{x_3}$$

• Let $H_k(x_1, \ldots, x_n)$ be the square submatrix formed by the first k rows and columns of $H(x_1, \ldots, x_n)$

• The *k*th principal minor of $H(x_1, \ldots, x_n)$ is

Example 4. Find all of the leading principal minors of $H(x_1, ..., x_n)$ from Example 3 at $(x_1, x_2, x_3) = (0, 0, 1)$, the critical point of *f* found in Example 2.

• Second derivative test.

- Suppose (a_1, a_2, \ldots, a_n) is a critical point of f
- If $d_n \neq 0$:

(1) if all the principal minors of $H(a_1, \ldots, a_n)$ are $(d_1 > 0, d_2 > 0, \ldots, d_n > 0)$	bositive $\left. \right\}$ then <i>f</i> has a local minimum at (a_1, \ldots, a_n)
(2) if the first principal minor of $H(a_1,, a_n)$ is and the remaining principal minors alternate in $(d_1 < 0, d_2 > 0, d_3 < 0, \text{etc.})$	egative sign $\begin{cases} \\ \\ \\ \\ \end{cases}$ then f has a local maximum at (a_1, \ldots, a_n)
(3) otherwise,	f has a saddle point at (a_1, \ldots, a_n)

• If $d_n = 0$, then the test gives no information

Example 5. Is $(x_1, x_2, x_3) = (0, 0, 1)$, the critical point of f found in Example 2, a local minimum or a local maximum?

- Note that the second-order sufficient condition is just a more general version of the second derivative test we had for functions with 2 variables
- For a function f(x, y) with 2 variables, the Hessian is

(i) "all the principal minors are positive" means

(ii) "the first principal minor is negative, and the remaining principal minors alternate in sign" means

5 Exercises

Problem 1. Let $f(x, y, z) = x^3 + xy^2 + x^2 + y^2 + 3z^2$. Find the critical points. Classify each critical point as a local maximum, local minimum, or saddle point.