Lesson 16. Optimization of Functions with n Variables

1 Review: optimization of a function of 2 variables

- Let f be a function of two variables
- $f(a, b)$ is a local minimum of f if $f(a, b) \leq f(x, y)$ for all (x, y) "near" (a, b)
- $f(a, b)$ is a local maximum of f if $f(a, b) \geq f(x, y)$ for all (x, y) "near" (a, b)
- (a, b) is a critical point of f if either
(i) $\quad f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ or
(ii) $\quad f_{x}(a, b)$ or $f_{y}(a, b)$ does not exist
- Local optima must occur at critical points
- How to find local optima:
- Let's assume $f_{x}, f_{y}, f_{x x}, f_{y y}$, and $f_{x y}$ always exist
- Let (a, b) be a critical point of f - in this case, that means $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$
- Second derivative test.
\diamond Define $D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$
\diamond Then:

if $D>0$ and $f_{x x}(a, b)>0$,	then f has a local minimum at (a, b)	
if $D>0$ and $f_{x x}(a, b)<0$,	then f has a local maximum at (a, b)	
if $D<0$,		then f has a saddle point at (a, b)
if $D=0$,		then the test gives no information

Example 1. Find the local optima of $f(x, y)=12 x+18 y-2 x^{2}-x y-2 y^{2}$.

2 An economic application: profit maximization for a multiproduct firm

- There are many applications of optimization to economics
- A classic example: profit maximization
- Consider a firm that produces and sells two products
- Prices of these products are exogenously determined
- Variables:

$$
\begin{aligned}
& R=\text { revenue } \\
& C=\text { cost }
\end{aligned}
$$

$$
Q_{1}=\text { quantity of product } 1 \text { produced }
$$

$$
Q_{2}=\text { quantity of product } 2 \text { produced }
$$

- Model:

$$
\begin{array}{ll}
\operatorname{maximize} & R-C \\
\text { subject to } & R=12 Q_{1}+18 Q_{2} \\
& C=2 Q_{1}^{2}+Q_{1} Q_{2}+2 Q_{2}^{2}
\end{array}
$$

- The unit price of product 1 is \square and the unit price of product 2 is
- The marginal cost of product 1 is
- The marginal cost of product 2 is
- The production costs of the two products are related to each other!
- We can write profit as a function of Q_{1} and Q_{2} :
- We want to maximize profit π - we already did this in Example 1 !

$$
f \leftrightarrow \pi \quad x \leftrightarrow Q_{1} \quad y \leftrightarrow Q_{2}
$$

- Locally optimal production plan and profit:
- Looking ahead: what if we have 3 products? 100 products? n products?

3 The gradient and critical points

- Let f be a function of n variables
- Let's call these variables $x_{1}, x_{2}, \ldots, x_{n}$
- $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a local minimum of f if

$$
f\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad \text { for all }\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { "near" }\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

- $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a local maximum of f if

$$
f\left(a_{1}, a_{2}, \ldots, a_{n}\right) \geq f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { for all }\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { "near" }\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

- Let's assume that all the first and second partial derivatives always exist
- The gradient of f is the vector
- In words, $\frac{\partial f}{\partial x_{i}}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is
\square
- Intuitively, the rate of change at a local minimum or local maximum should be zero in all directions
- Theorem. If $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a local minimum or local maximum of f, then $\nabla f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0$, or equivalently

$$
\frac{\partial f}{\partial x_{1}}\left(a_{1}, \ldots, a_{n}\right)=0 \quad \frac{\partial f}{\partial x_{2}}\left(a_{1}, \ldots, a_{n}\right)=0 \quad \ldots \quad \frac{\partial f}{\partial x_{n}}\left(a_{1}, \ldots, a_{n}\right)=0
$$

- The points that satisfy the first-order necessary condition are called critical points
- Note that this is just a more general version of what we had for functions with 2 variables

Example 2. Find the critical points of $f\left(x_{1}, x_{2}, x_{3}\right)=e^{2 x_{1}}+e^{-x_{2}}+e^{x_{3}^{2}}-2 x_{1}-2 e^{x_{3}}+x_{2}$.

4 The Hessian and the second derivative test

- How do we know if a critical point is a local minimum or a local maximum?
- We need a "second derivative test" for n variables
- The Hessian matrix of f is

$$
H\left(x_{1}, \ldots, x_{n}\right)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

- Recall that $\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}$ means "take the derivative of f with respect to x_{i}, then with respect to x_{j} "

Example 3. Find the Hessian matrix of $f\left(x_{1}, x_{2}, x_{3}\right)=e^{2 x_{1}}+e^{-x_{2}}+e^{x_{3}^{2}}-2 x_{1}-2 e^{x_{3}}+x_{2}$. Recall from Example 2 that

$$
\frac{\partial f}{\partial x_{1}}=2 e^{2 x_{1}}-2 \quad \frac{\partial f}{\partial x_{2}}=-e^{-x_{2}}+1 \quad \frac{\partial f}{\partial x_{3}}=2 x_{3} e^{x_{3}^{2}}-2 e^{x_{3}}
$$

- Let $H_{k}\left(x_{1}, \ldots, x_{n}\right)$ be the square submatrix formed by the first k rows and columns of $H\left(x_{1}, \ldots, x_{n}\right)$
- The k th principal minor of $H\left(x_{1}, \ldots, x_{n}\right)$ is

Example 4. Find all of the leading principal minors of $H\left(x_{1}, \ldots, x_{n}\right)$ from Example 3 at $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,1)$, the critical point of f found in Example 2.

- Second derivative test.

- Suppose $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a critical point of f
- If $d_{n} \neq 0$:
(1) if all the principal minors of $H\left(a_{1}, \ldots, a_{n}\right)$ are positive $\left(d_{1}>0, d_{2}>0, \ldots, d_{n}>0\right)$
then f has a local minimum at $\left(a_{1}, \ldots, a_{n}\right)$
(2) if the first principal minor of $H\left(a_{1}, \ldots, a_{n}\right)$ is negative and the remaining principal minors alternate in sign $\left(d_{1}<0, d_{2}>0, d_{3}<0\right.$, etc. $)$
(3) otherwise,
then f has a local maximum at $\left(a_{1}, \ldots, a_{n}\right)$
f has a saddle point at $\left(a_{1}, \ldots, a_{n}\right)$
- If $d_{n}=0$, then the test gives no information

Example 5. Is $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,1)$, the critical point of f found in Example 2, a local minimum or a local maximum?

- Note that the second-order sufficient condition is just a more general version of the second derivative test we had for functions with 2 variables
- For a function $f(x, y)$ with 2 variables, the Hessian is
and so
(i) "all the principal minors are positive" means
(ii) "the first principal minor is negative, and the remaining principal minors alternate in sign" means
\square

5 Exercises

Problem 1. Let $f(x, y, z)=x^{3}+x y^{2}+x^{2}+y^{2}+3 z^{2}$. Find the critical points. Classify each critical point as a local maximum, local minimum, or saddle point.

